Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655918

RESUMO

Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.


Assuntos
Deglutição , Hipóxia , Animais , Camundongos , Deglutição/fisiologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Optogenética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/metabolismo , Neurônios Colinérgicos/fisiologia , Neurônios Colinérgicos/metabolismo , Interneurônios/fisiologia , Interneurônios/metabolismo , Respiração , Feminino
2.
Artigo em Inglês | MEDLINE | ID: mdl-38591125

RESUMO

Chronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases. To investigate the molecular impact of CIH, we examined male C57BL/6J mice exposed to CIH for 21 days, comparing to normoxic controls. We employed single-nucleus RNA sequencing to comprehensively examine the transcriptomic impact of CIH on key cell classes within the brainstem, specifically excitatory neurons, inhibitory neurons, and oligodendrocytes. These cell classes regulate essential physiological functions, including autonomic tone, cardiovascular control, and respiration. Through analysis of 10,995 nuclei isolated from pontine-medullary tissue, we identified seven major cell classes, further subdivided into 24 clusters. Our findings among these cell classes, revealed significant differential gene expression, underscoring their distinct responses to CIH. Notably, neurons exhibited transcriptional dysregulation of genes associated with synaptic transmission, and structural remodeling. In addition, we find dysregulated genes encoding ion channels, and inflammatory response. Concurrently, oligodendrocytes exhibited dysregulated genes associated with oxidative phosphorylation and oxidative stress. Utilizing CellChat network analysis, we uncovered CIH-dependent altered patterns of diffusible inter-cellular signaling. These insights offer a comprehensive transcriptomic cellular atlas of the pons-medulla and provide a fundamental resource for the analysis of molecular adaptations triggered by CIH.

3.
Med Biol Eng Comput ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403862

RESUMO

Since the first electroencephalogram (EEG) was obtained, there have been many possibilities to use it as a tool to access brain cognitive dynamics. Mathematical (Math) problem solving is one of the most important cortical processes, but it is still far from being well understood. EEG is an inexpensive and simple indirect measure of brain operation, but only recently has low-cost equipment (mobile EEG) allowed sophisticated analyses in non-clinical settings. The main purpose of this work is to study EEG activation during a Math task in a realistic environment, using mobile EEG. A matching pursuit (MP)-based signal analysis technique was employed, since MP properties render it a priori suitable to study induced EEG activity over long time sequences, when it is not tightly locked to a given stimulus. The study sample comprised sixty healthy volunteers. Unlike the majority of previous studies, subjects were studied in a sitting position with their eyes open. They completed a written Math task outside the EEG lab, wearing a mobile EEG device (EPOC+). Theta [4 Hz-7.5 Hz], alpha (7.5 Hz-13 Hz] and 0.5 Hz micro-bands in the [0.5 Hz-20 Hz] range were studied with a low-density stochastic MP dictionary. Over 1-min windows, ongoing EEG alpha and theta activity was decomposed into numerous MP atoms with median duration around 3 s, similar to the duration of induced, time-locked activity obtained with event-related (des)synchronization (ERS/ERD) studies. Relative to Rest, there was lower right-side and posterior MP alpha atom/min during Math, whereas MP theta atom/min was significantly higher on anteriorly located electrodes, especially on the left side. MP alpha findings were particularly significant on a narrow range around 10 Hz-10.5 Hz, consistent with FFT alpha peak findings from ERS/ERD studies. With a streamlined protocol, these results replicate previous findings of EEG alpha and theta activation obtained during Math tasks with different signal analysis techniques and in different time frames. The efficient application to real-world, noisy EEG data with a low-resolution stochastic MP dictionary shows that this technique is very encouraging. These results provide support for studies of mathematical cognition with mobile EEG and matching pursuit.

4.
Behav Brain Res ; 462: 114873, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38266776

RESUMO

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc), which leads to motor and non-motor symptoms (NMS). NMS can appear many years before the classical motor symptoms and are associated with the neurodegeneration of several nuclei; in this work, we highlight the neurodegeneration of Locus coeruleus (LC) in PD. The aim was to investigate the effects of depleting SNpc and LC catecholaminergic neurons on behavioral and neurobiological endpoints. Here we used 6-hydroxydopamine (6-OHDA) in order to induced neurotoxic damage in three independent experimental groups: SNpc lesion group, which 6-OHDA was injected into CPu (CPu-6-OHDA), LC lesion group, which 6-OHDA was injected directly on LC to selectively caused a damage on this nucleus (LC-6-OHDA), and the combined SNpc and LC lesion group (CL-6-OHDA). Next, the behavioral studies were performed using the Morris water maze (MWM), open field (OF), and elevated plus maze (EPM). After stereotaxic surgeries, the animals showed a loss of 67% and 77% of Tyrosine hydroxylase (TH) reactive neurons in the SNpc and LC, respectively. The behavioral analysis showed the anxiety-like behavior in CL-6-OHDA group in the EPM test; in the MWM test, the combined lesions (CL-6-OHDA) showed an impairment in memory acquisition and spatial memory; and no changes were observed in locomotor activity in all the tests. Furthermore, our investigation demonstrating the effects of depleting SN and LC catecholaminergic neurons on behavioral and neurobiological parameters. All these data together lead us to believe that a bilateral PD model including a LC bilateral degeneration is potentially a more accurate model to evaluate the NMS in the pathological development of the disease in rodents.


Assuntos
Doença de Parkinson , Animais , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Roedores , Locus Cerúleo/metabolismo , Neurônios Dopaminérgicos , Substância Negra/metabolismo , Modelos Animais de Doenças
5.
Respir Physiol Neurobiol ; 320: 104201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043841

RESUMO

Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GGEMG). Blockade of the α1 adrenergic receptors (α1-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GGEMG without affecting inspiratory cessation. In contrast, blockade of α2-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GGEMG activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α1 and α2 adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.


Assuntos
Bulbo , Respiração , Ratos , Animais , Masculino , Ratos Wistar , Taxa Respiratória , Ponte/fisiologia , Receptores Adrenérgicos
6.
Brain Res ; 1822: 148586, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757967

RESUMO

Parkinson's Disease (PD) is characterized by classic motor symptoms related to movement, but PD patients can experience symptoms associated with impaired autonomic function, such as respiratory disturbances. Functional respiratory deficits are known to be associated with brainstem neurodegeneration in the mice model of PD induced by 6-hydroxydopamine (6-OHDA). Understanding the causes of neuronal death is essential for identifying specific targets to prevent degeneration. Many mechanisms can explain why neurons die in PD, and neuroinflammation is one of them. To test the influence of inflammation, mediated by microglia and astrocytes cells, in the respiratory disturbances associated with brainstem neurons death, we submitted wild-type (WT) and TNF receptor 1 (TNFR1) knockout male mice to the 6-OHDA model of PD. Also, male C57BL/6 animals were induced using the same PD model and treated with minocycline (45 mg/kg), a tetracycline antibiotic with anti-inflammatory properties. We show that degeneration of brainstem areas such as the retrotrapezoid nucleus (RTN) and the pre-Botzinger Complex (preBotC) were prevented in both protocols. Notably, respiratory disturbances were no longer observed in the animals where inflammation was suppressed. Thus, the data demonstrate that inflammation is responsible for the breathing impairment in the 6-OHDA-induced PD mouse model.


Assuntos
Doença de Parkinson , Humanos , Camundongos , Animais , Masculino , Oxidopamina/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Inflamação/complicações , Modelos Animais de Doenças , Neurônios Dopaminérgicos
7.
Elife ; 122023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272425

RESUMO

Breathing needs to be tightly coordinated with upper airway behaviors, such as swallowing. Discoordination leads to aspiration pneumonia, the leading cause of death in neurodegenerative disease. Here, we study the role of the postinspiratory complex (PiCo) in coordinating breathing and swallowing. Using optogenetic approaches in freely breathing anesthetized ChATcre:Ai32, Vglut2cre:Ai32 and intersectional recombination of ChATcre:Vglut2FlpO:ChR2 mice reveals PiCo mediates airway protective behaviors. Activation of PiCo during inspiration or the beginning of postinspiration triggers swallow behavior in an all-or-nothing manner, while there is a higher probability for stimulating only laryngeal activation when activated further into expiration. Laryngeal activation is dependent on stimulation duration. Sufficient bilateral PiCo activation is necessary for preserving the physiological swallow motor sequence since activation of only a few PiCo neurons or unilateral activation leads to blurred upper airway behavioral responses. We believe PiCo acts as an interface between the swallow pattern generator and the preBötzinger complex to coordinate swallow and breathing. Investigating PiCo's role in swallow and laryngeal coordination will aid in understanding discoordination with breathing in neurological diseases.


Assuntos
Laringe , Doenças Neurodegenerativas , Camundongos , Animais , Respiração , Expiração/fisiologia , Sistema Respiratório
8.
Brain Res ; 1815: 148448, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301422

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). In a mouse model of PD induced by the injection of 6-hydroxydopamine (6-OHDA) into the caudate putamen (CPu) dyspnea events are very common. Neuroanatomical and functional studies show that the number of glutamatergic neurons in the pre-Bötzinger Complex (preBötC) are reduced. We hypothesize that the neuronal loss, and consequently loss of glutamatergic connections in the respiratory network previously investigated, are responsible for the breathing impairment in PD. Here, we tested whether ampakines (CX614), a subgroup of AMPA receptor positive allosteric modulators, could stimulate the respiratory activity in PD-induced animals. CX614 (50 µM) injected intraperitoneally or directly into the preBötC region reduced the irregularity pattern and increased the respiratory rate by 37% or 82%, respectively, in PD-induced animals. CX614 also increased the respiratory frequency in healthy animals. These data suggest that ampakine CX614 could become a tool to restore breathing in PD.


Assuntos
Oxazinas , Doença de Parkinson , Taxa Respiratória , Animais , Camundongos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Taxa Respiratória/efeitos dos fármacos , Substância Negra/patologia , Masculino , Camundongos Endogâmicos C57BL
9.
Neuroscience ; 512: 32-46, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36690033

RESUMO

Parkinson's disease (PD) is a motor disorder resulting from degeneration of dopaminergic neurons of substantia nigra pars compacta (SNpc), with classical and non-classical symptoms such as respiratory instability. An important region for breathing control, the Pedunculopontine Tegmental Nucleus (PPTg), is composed of cholinergic, glutamatergic, and GABAergic neurons. We hypothesize that degenerated PPTg neurons in a PD model contribute to the blunted respiratory activity. Adult mice (40 males and 29 females) that express the fluorescent green protein in cholinergic, glutamatergic or GABAergic cells were used (Chat-cre Ai6, Vglut2-cre Ai6 and Vgat-cre Ai6) and received bilateral intrastriatal injections of vehicle or 6-hydroxydopamine (6-OHDA). Ten days later, the animals were exposed to hypercapnia or hypoxia to activate PPTg neurons. Vglut2-cre Ai6 animals also received retrograde tracer injections (cholera toxin b) into the retrotrapezoid nucleus (RTN) or preBötzinger Complex (preBötC) and anterograde tracer injections (AAV-mCherry) into the SNpc. In 6-OHDA-injected mice, there is a 77% reduction in the number of dopaminergic neurons in SNpc without changing the number of neurons in the PPTg. Hypercapnia activated fewer Vglut2 neurons in PD, and hypoxia did not activate PPTg neurons. PPTg neurons do not input RTN or preBötC regions but receive projections from SNpc. Although our results did not show a reduction in the number of glutamatergic neurons in PPTg, we observed a reduction in the number of neurons activated by hypercapnia in the PD animal model, suggesting that PPTg may participate in the hypercapnia ventilatory response.


Assuntos
Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Masculino , Camundongos , Animais , Doença de Parkinson/metabolismo , Oxidopamina , Hipercapnia/metabolismo , Neurônios Dopaminérgicos/metabolismo , Colinérgicos , Hipóxia/metabolismo
10.
Neuroscience ; 502: 91-106, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934251

RESUMO

Parkinson's Disease (PD) is a neurogenerative disorder characterized by the death of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), leading to motor, cognitive, learning, and respiratory dysfunctions. New evidence revealed that breathing impairment in PD mainly results from oxidative stress (OS) that initiates apoptotic signaling in respiratory neurons. Here, we investigated the role of OS inhibition using apocynin (non-specific NADPH oxidase inhibitor) in a 6-OHDA PD animal model in the neural control of breathing. The PD model was confirmed with a 70% reduction in TH-expressing neurons within the SNpc. After 20 and 40 days of PD induction, no differences were observed in superoxide anion levels in any respiratory nuclei. At 30 days after PD induction, 6-OHDA animals presented OS that was prevented in all respiratory nuclei by adding apocynin to the drinking water for 10 days. Forty days after PD animal model induction, impaired motor and breathing function, reduced Phox2b and NK1 receptors-expressing neurons in the medullary respiratory areas; decreased latency to fall in the rotarod motor test; and attenuated respiratory frequency and minute ventilation parameters at rest and under hypercapnia conditions were observed. After 20 days of apocynin treatment, neurodegeneration of respiratory nuclei and breathing dysfunction in 6-OHDA animals were prevented. Thus, OS contributes to respiratory neuron death, consequently leading to breathing dysfunction in the 6-OHDA PD animal model. Furthermore, these results present a new perspective for preventing the onset and progression of PD-related respiratory impairments.


Assuntos
Água Potável , Doença de Parkinson , Animais , Oxidopamina/toxicidade , Superóxidos , Neurônios Dopaminérgicos , Modelos Animais de Doenças , NADPH Oxidases , Estresse Oxidativo , Substância Negra
11.
Acta Physiol (Oxf) ; 236(3): e13864, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35959519

RESUMO

AIM: Sympathoexcitation and sleep-disordered breathing are common contributors for disease progression. Catecholaminergic neurons from the rostral ventrolateral medulla (RVLM-C1) modulate sympathetic outflow and have anatomical projections to respiratory neurons; however, the contribution of highly selective activation of RVLM-C1 neurons on long-term autonomic and breathing (dys)regulation remains to be understood. METHODS: To explore this relationship, a lentiviral vector carrying the light-sensitive cation channel channelrhodopsin-2 (LVV-PRSX8-ChR2-YFP) was unilaterally injected into the RVLM of healthy rats. On the contralateral side, LVV-PRSX8-ChR2-YFP was co-injected with a specific immunotoxin (DßH-SAP) targeted to eliminate C1 neurons. RESULTS: Intermittent photostimulation of RVLM-C1 in vivo, in unrestrained freely moving rats, elicited long-term facilitation of the sympathetic drive, a rise in blood pressure and sympatho-respiratory coupling. In addition, photoactivation of RVLM-C1 induced long-lasting ventilatory instability, characterized by oscillations in tidal volume and increased breathing variability, but only during non-rapid eye movement sleep. These effects were not observed when photostimulation of the RVLM was performed in the presence of DßH-SAP toxin. CONCLUSIONS: The finding that intermittent activation of RVLM-C1 neurons induces autonomic and breathing dysfunction suggest that episodic stimulation of RVLM-C1 may serve as a pathological substrate for the long-term development of cardiorespiratory disorders.


Assuntos
Imunotoxinas , Ratos , Animais , Channelrhodopsins , Pressão Sanguínea/fisiologia , Neurônios/fisiologia , Sono
12.
Brain Res Bull ; 187: 138-154, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35777704

RESUMO

Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.


Assuntos
Doença de Parkinson , Trifosfato de Adenosina , Animais , Dióxido de Carbono/metabolismo , Proteômica , Ratos , Ratos Wistar
13.
Neuroscience ; 476: 102-115, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582982

RESUMO

The postinspiratory complex (PiCo) is a region located in the ventromedial medulla involved with the post-inspiratory activity. PiCo neurons are excitatory (VGlut2+) and express the enzyme choline acetyl transferase (ChAT+). Evidence also suggests that PiCo is coupled to two additional groups of neurons involved in breathing process, i.e. the pre-Bötzinger complex (preBötC, inspiration) and the retrotrapezoid nucleus (RTN, active expiration), composing all together, the hypothesized triple respiratory oscillator. Here, our main objective is to demonstrate the afferent connections to PiCo region. We mapped projecting-neurons to PiCo by injecting Fluorogold (FG) retrograde tracer into the PiCo of adult Long-Evans Chat-cre male rats. We reported extensive projections from periaqueductal grey matter and Kölliker-Fuse regions and mild projections from the nucleus of the solitary tract, ventrolateral medulla and hypothalamus. We also injected a cre-dependent vector expressing channelrhodopsin 2 (AAV5-ChR2) fused with enhanced mCherry into the PiCo of ChAT-cre rats to optogenetic activate those neurons and investigate the role of PiCo for inspiratory/postinspiratory activity. Both in urethane-anesthetized and unrestrained conscious rats the response of ChR2-transduced neurons to light induced an increase in postinspiratory activity. Our data confirmed that PiCo seems to be dedicated to postinspiratory activity and represent a site of integration for autonomic and motor components of respiratory and non-respiratory pathways.


Assuntos
Bulbo , Rombencéfalo , Animais , Neurônios Colinérgicos , Masculino , Prosencéfalo , Ratos , Ratos Long-Evans , Respiração
14.
Respir Physiol Neurobiol ; 294: 103775, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34416380

RESUMO

Obesity and the corresponding variations in female sex hormones are associated with severe lung disease. We determined the potential effects of obesity and sex hormones in female mice by investigating changes in lung structure and respiratory function in an obesity model induced by postnatal overnutrition. Obese female mice exhibited pronounced weight gain, abdominal fat accumulation and collagen type I deposition in the airways. However, neither elastic tissue nor estrogen receptors-α/-ß were affected in obese female mice after ovariectomy or sham-operated mice. Bronchoconstriction in response to methacholine challenge in obese sham-operated mice was higher than in the obese group after ovariectomy. Our results suggest that the coexistence of obesity and ovariectomy impacted on respiratory system and airway resistance (attenuates bronchoconstriction after methacholine), on collagen I deposition and on airway estrogen ß-receptors of mice.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Broncoconstrição/fisiologia , Colágeno Tipo I/metabolismo , Receptor beta de Estrogênio/metabolismo , Obesidade , Ovariectomia , Transtornos Respiratórios , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Ovariectomia/efeitos adversos , Transtornos Respiratórios/etiologia , Transtornos Respiratórios/metabolismo , Transtornos Respiratórios/fisiopatologia
15.
J Neurosci ; 41(21): 4732-4747, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33863785

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder anatomically characterized by a progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). Much less known, yet clinically very important, are the detrimental effects on breathing associated with this disease. Consistent with the human pathophysiology, the 6-hydroxydopamine hydrochloride (6-OHDA) rodent model of PD shows reduced respiratory frequency (fR) and NK1r-immunoreactivity in the pre-Bötzinger complex (preBötC) and PHOX2B+ neurons in the retrotrapezoid nucleus (RTN). To unravel mechanisms that underlie bradypnea in PD, we employed a transgenic approach to label or stimulate specific neuron populations in various respiratory-related brainstem regions. PD mice were characterized by a pronounced decreased number of putatively rhythmically active excitatory neurons in the preBötC and adjacent ventral respiratory column (VRC). Specifically, the number of Dbx1 and Vglut2 neurons was reduced by 47.6% and 17.3%, respectively. By contrast, inhibitory Vgat+ neurons in the VRC, as well as neurons in other respiratory-related brainstem regions, showed relatively minimal or no signs of neuronal loss. Consistent with these anatomic observations, optogenetic experiments identified deficits in respiratory function that were specific to manipulations of excitatory (Dbx1/Vglut2) neurons in the preBötC. We conclude that the decreased number of this critical population of respiratory neurons is an important contributor to the development of irregularities in inspiratory rhythm generation in this mouse model of PD.SIGNIFICANCE STATEMENT We found a decreased number of a specific population of medullary neurons which contributes to breathing abnormalities in a mouse model of Parkinson's disease (PD).


Assuntos
Neurônios/patologia , Transtornos Parkinsonianos/fisiopatologia , Transtornos Respiratórios/fisiopatologia , Centro Respiratório/fisiopatologia , Animais , Feminino , Inalação/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/patologia , Transtornos Respiratórios/etiologia , Transtornos Respiratórios/patologia , Centro Respiratório/patologia
16.
J Neurophysiol ; 125(3): 699-719, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427575

RESUMO

Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.


Assuntos
Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Receptores de Neurotransmissores/fisiologia , Mecânica Respiratória/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Humanos , Bulbo/citologia , Receptores Purinérgicos/fisiologia , Respiração , Neurônios Serotoninérgicos/fisiologia
17.
Brain Pathol ; 30(5): 926-944, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32497400

RESUMO

Emerging evidence from multiple studies indicates that Parkinson's disease (PD) patients suffer from a spectrum of autonomic and respiratory motor deficiencies in addition to the classical motor symptoms attributed to substantia nigra degeneration of dopaminergic neurons. Animal models of PD show a decrease in the resting respiratory rate as well as a decrease in the number of Phox2b-expressing retrotrapezoid nucleus (RTN) neurons. The aim of this study was to determine the extent to which substantia nigra pars compact (SNc) degeneration induced RTN biomolecular changes and to identify the extent to which RTN pharmacological or optogenetic stimulations rescue respiratory function following PD-induction. SNc degeneration was achieved in adult male Wistar rats by bilateral striatal 6-hydroxydopamine injection. For proteomic analysis, laser capture microdissection and pressure catapulting were used to isolate the RTN for subsequent comparative proteomic analysis and Ingenuity Pathway Analysis (IPA). The respiratory parameters were evaluated by whole-body plethysmography and electromyographic analysis of respiratory muscles. The results confirmed reduction in the number of dopaminergic neurons of SNc and respiratory rate in the PD-animals. Our proteomic data suggested extensive RTN remodeling, and that pharmacological or optogenetic stimulations of the diseased RTN neurons promoted rescued the respiratory deficiency. Our data indicate that despite neuroanatomical and biomolecular RTN pathologies, that RTN-directed interventions can rescue respiratory control dysfunction.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/metabolismo , Insuficiência Respiratória/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/fisiologia , Proteômica , Ratos , Ratos Wistar , Respiração , Insuficiência Respiratória/terapia , Substância Negra/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
18.
J Neurophysiol ; 123(5): 1933-1943, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267190

RESUMO

The parafacial respiratory group (pFRG), located in the lateral aspect of the rostroventral lateral medulla, has been described as a conditional expiratory oscillator that emerges mainly in conditions of high metabolic challenges to increase breathing. The convergence of inhibitory and excitatory inputs to pFRG and the generation of active expiration may be more complex than previously thought. We hypothesized that the medullary raphe, a region that has long been described to be involved in breathing activity, is also responsible for the expiratory activity under hypercapnic condition. To test this hypothesis, we performed anatomical and physiological experiments in urethane-anesthetized adult male Wistar rats. Our data showed anatomical projections from serotonergic (5-HT-ergic) and GABAergic neurons of raphe magnus (RMg) and obscurus (ROb) to the pFRG region. Pharmacological inhibition of RMg or ROb with muscimol (60 pmol/30 nL) did not change the frequency or amplitude of diaphragm activity and did not generate active expiration. However, under hypercapnia (9-10% CO2), the inhibition of RMg or ROb increased the amplitude of abdominal activity, without changing the increased amplitude of diaphragm activity. Depletion of serotonergic neurons with saporin anti-SERT injections into ROb and RMg did not increase the amplitude of abdominal activity during hypercapnia. These results show that the presumably GABAergic neurons within the RMg and ROb may be the inhibitory source to modulate the activity of pFRG during hypercapnia condition.NEW & NOTEWORTHY Medullary raphe has been involved in the inspiratory response to central chemoreflex; however, these reports have never addressed the role of raphe neurons on active expiration induced by hypercapnia. Here, we showed that a subset of GABA cells within the medullary raphe directly project to the parafacial respiratory region, modulating active expiration under high levels of CO2.


Assuntos
Expiração/fisiologia , Neurônios GABAérgicos/fisiologia , Hipercapnia/fisiopatologia , Bulbo/fisiologia , Rede Nervosa/fisiologia , Núcleos da Rafe/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Neurônios Serotoninérgicos/fisiologia
19.
Exp Neurol ; 323: 113110, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712126

RESUMO

Parkinson's disease (PD) is a progressive and chronic neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and affects multiple neurotransmission systems such as hypocretin/orexin (HO) release and can lead to cognitive and memory deficits. The HO neurons located in lateral hypothalamus/perifornical area (LH/PeF) are involved with consolidation and memory processes. Here we verified the involvement of HO deficit in learning and memory process in an animal model of PD induced by bilateral intra-striatal injections of 6-hydroxydopamine (6-OHDA). The present study performed a working memory test by object recognition task and spatial memory test using the Morris water maze in control and PD-induced animals after depletion of HO neurons. In addition, our results indicate that HO system in degenerative disorders such as PD may modulate the declarative and spatial memory (assessed by object recognition and Morris water maze tests, respectively). A significant reduction of HO neurons in the LH/PeF and HO degeneration process in the hippocampus (CA1 and dentate gyrus areas) were noticed. Our data suggest that the HO system degeneration could be associated to memory dysfunction in PD.


Assuntos
Hipotálamo/fisiopatologia , Transtornos da Memória/fisiopatologia , Neurônios/metabolismo , Orexinas/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Animais , Masculino , Camundongos , Ratos Wistar
20.
J Physiol ; 597(24): 5799-5820, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31642520

RESUMO

KEY POINTS: A strong association between disordered breathing patterns, elevated sympathetic activity, and enhanced central chemoreflex drive has been shown in experimental and human heart failure (HF). The aim of this study was to determine the contribution of catecholaminergic rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) to both haemodynamic and respiratory alterations in HF. Apnoea/hypopnoea incidence (AHI), breathing variability, respiratory-cardiovascular coupling, cardiac autonomic control and cardiac function were analysed in HF rats with or without selective ablation of RVLM-C1 neurones. Partial lesion (∼65%) of RVLM-C1 neurones reduces AHI, respiratory variability, and respiratory-cardiovascular coupling in HF rats. In addition, the deleterious effects of central chemoreflex activation on cardiac autonomic balance and cardiac function in HF rats was abolished by ablation of RVLM-C1 neurones. Our findings suggest that RVLM-C1 neurones play a pivotal role in breathing irregularities in volume overload HF, and mediate the sympathetic responses induced by acute central chemoreflex activation. ABSTRACT: Rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) modulate sympathetic outflow and breathing under normal conditions. Heart failure (HF) is characterized by chronic RVLM-C1 activation, increased sympathetic activity and irregular breathing patterns. Despite studies showing a relationship between RVLM-C1 and sympathetic activity in HF, no studies have addressed a potential contribution of RVLM-C1 neurones to irregular breathing in this context. Thus, the aim of this study was to determine the contribution of RVLM-C1 neurones to irregular breathing patterns in HF. Sprague-Dawley rats underwent surgery to induce volume overload HF. Anti-dopamine ß-hydroxylase-saporin toxin (DßH-SAP) was used to selectively lesion RVLM-C1 neurones. At 8 weeks post-HF induction, breathing pattern, blood pressures (BP), respiratory-cardiovascular coupling (RCC), central chemoreflex function, cardiac autonomic control and cardiac function were studied. Reduction (∼65%) of RVLM-C1 neurones resulted in attenuation of irregular breathing, decreased apnoea-hypopnoea incidence (11.1 ± 2.9 vs. 6.5 ± 2.5 events h-1 ; HF+Veh vs. HF+DßH-SAP; P < 0.05) and improved cardiac autonomic control in HF rats. Pathological RCC was observed in HF rats (peak coherence >0.5 between breathing and cardiovascular signals) and was attenuated by DßH-SAP treatment (coherence: 0.74 ± 0.12 vs. 0.54 ± 0.10, HF+Veh vs. HF+DßH-SAP rats; P < 0.05). Central chemoreflex activation had deleterious effects on cardiac function and cardiac autonomic control in HF rats that were abolished by lesion of RVLM-C1 neurones. Our findings reveal that RVLM-C1 neurones play a major role in irregular breathing patterns observed in volume overload HF and highlight their contribution to cardiac dysautonomia and deterioration of cardiac function during chemoreflex activation.


Assuntos
Catecolaminas/metabolismo , Insuficiência Cardíaca/fisiopatologia , Bulbo/metabolismo , Neurônios/fisiologia , Respiração , Animais , Masculino , Bulbo/citologia , Bulbo/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Reflexo , Saporinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...